

Accredited by NAAC(Cycle–III) with 'A+' Grade (Recognized by UGC, Approved by AICTE, New Delhi and Affiliated to Bharathiar University, Coimbatore)

DEPARTMENT OF GRAPHIC & CREATIVE DESIGN AND DATA ANALYTICS

COURSE NAME: COMPUTER SYSTEM ARCHITECTURE (23UCU402)

I YEAR /I SEMESTER

Unit I- Data Representation

Topic 1: Data types

Data Types

- . Modern computers are built up with transistors.
- . Whenever an electric current pass into the transistors either an **ON** or **OFF** status will be established.
- Therefore the computer can only recognize two numbers, **0** for OFF, and **1** for ON, which can be referred to as **BIT**.

Data Types

Data Types

- . Hence computers can be said to be discrete machines.
- The number system consists only of two numbers is called **Binary System**.
- And to distinguish the different numbering systems, the numbers human use, ie 1,2,3,4..., will be called **Decimals** (since they are based 10 numbers)

CSS Box Model

Decimal	Binary
0	0000 0000
1	
2	
3	
4	
5	
6	
7	
8	
9	

2 ⁹	2 ⁸	2 ⁷	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	2 ⁰
512	256	128	64	32	16	8	4	2	1

Binary to decimal

Convert 110101 Binary to decimal

2 ⁹	2 ⁸	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
512	256	128	64	32	16	8	4	2	1
				1	1	0	1	0	1
				32 +	16+		4+		1
									53

1. Convert 110101 binary number to Decimal number

$$(110101)_{2} = (1 \times 2^{5}) + (1 \times 2^{4}) + (0 \times 2^{3}) + (1 \times 2^{2}) + (0 \times 2^{1}) + (1 \times 2^{0})$$

$$= 32 + 16 + 4 + 1$$

$$= (53)_{10}$$

$$(110101)_{2} = (53)_{10}$$

Assessment - Questions

- 1. Convert 110110110 binary number to Decimal number
- 2. Convert 110110110.110 binary number to Decimal number

Assessment - Answer

1. Convert 110110110 binary number to Decimal number

2 ⁹	28	27	2 ⁶	2 ⁵	24	2 ³	2 ²	21	20
512	256	128	64	32	16	8	4	2	1
	1	1	0	1	1	0	1	1	0
	256+	128+		32+	16+		4+	2	

438

Assessment - Answer

2.Convert 110110110.110 binary number to Decimal number

$$(110110110.110)_{2} = (1 \times 2^{8}) + (1 \times 2^{7}) + (0 \times 2^{6}) + (1 \times 2^{5}) + (1 \times 2^{4}) + (0 \times 2^{3})$$

$$+ (1 \times 2^{2}) + (1 \times 2^{1}) + (0 \times 2^{0}) + (1 \times 2^{-1}) + (1 \times 2^{-2}) + (0 \times 2^{-3})$$

$$= 256256 + 128128 + 3232 + 1616 + 44 + 22 + 1221 + 1441$$

$$= (438.75)_{10}$$

References

- 1.M.Morris Mano, "Computer System Architecture" 3rd Edition, Prentice Hall of India, 2000, ISBN-10: 0131663631
- 2. V.K. Puri, —DIGITAL ELECTRONICS CIRCUITS AND SYSTEMS" McGraw Hill Education (1 July 2017). ISBN-10: 9780074633175 , ISBN-13: 978-0074633175
- 3.William Stallings, "Computer Organization and Architecture, Designing for Performance" PHI/ Pearson Education North Asia Ltd., 10th Edition 2016, ISBN 978-0-13-410161-3 ISBN 0-13-410161-8.

Thank You

12 /11